Analysis of Data Reuse in Task Parallel Runtimes

Miquel Pericàs*, Abdelhalim Amer*, Kenjiro Taura[†] and Satoshi Matsuoka*

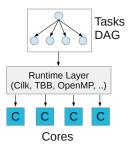
*Tokyo Institute of Technology †The University of Tokyo

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

Task Parallel Programming Models

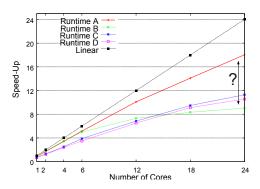
- Task-parallel programming models are popular tools for multicore programming
- They are general, simple and can be implemented efficiently



 Task-parallel runtimes manage assignation of tasks to cores, allowing programmers to write cleaner code

Performance of Runtime Systems

- Runtime schedulers implement heuristics to maximize parallelism and optimize resource sharing
- Performance can depend considerably on such heuristics, degradation often occurs without any obvious reason



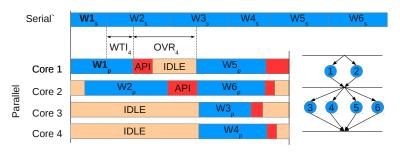
Scalability of task parallel applications

Why do task parallel codes not scale linearly?

- Runtime Overheads: execution cycles inside API calls
- Parallel Idleness: lost cycles due to load imbalance and lack of parallelism
- Resource Sharing: additional cycles due to contention or destructive sharing → work time inflation (WTI)

Quantifying Parallelization Stretch

- $OVR_N = Non\text{-}work \ Overheads}$ at N cores (API + IDLE time)
- WTI_N = Work Time Inflation at N cores



Parallel Stretch

$$\mathsf{T}_{\mathsf{par}} = \frac{\mathsf{T}_{\mathsf{ser}}}{\mathsf{N}} \times \mathsf{WTI}_{\mathit{N}} \times \mathsf{OVR}_{\mathit{N}} \to \mathsf{Speed-Up}_{\mathit{N}} = \frac{\mathsf{N}}{\mathsf{OVR}_{\mathit{N}} \times \mathsf{WTI}_{\mathit{N}}}$$

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

Case Study: Matmul and FMM

Matrix Multiplication ($C = A \times B$)

- **Input Size**: 4096×4096 elements
- Task Inputs/Outputs: 2D submatrices
- Average task size¹: 17 μs

Fast Multipole Method: Tree Traversal²

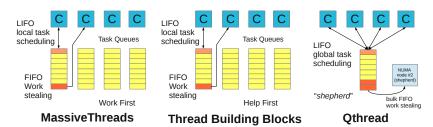
- Input Size: 1 million particles (Plummer)
- Task Inputs/Outputs: octree cells (multipoles and vectors of bodies)
- Average task size: 3.25 μs

¹measured on Intel Xeon E7-4807 at 1.86GHz

²https://bitbucket.org/rioyokota/exafmm-dev

Case Study: three runtimes

- MassiveThreads: Cilk-like runtime with random work stealer and work-first policy.
- **Threading Building Blocks**: C++ template based runtime with random work stealer and help-first policy.
- Qthread: Locality-aware runtime with shared task queue. A set of workers are grouped in a *shepherd*. Bulk work stealing across shepherds (50% of victim's tasks). Help-first policy.

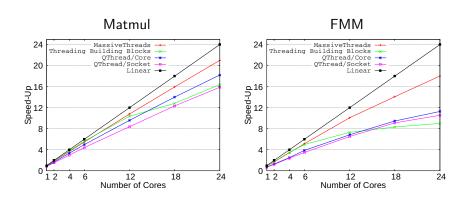


Experimental Setup

- Experimental platform is a 4-socket Intel Xeon E7- 4807 (Westmere) machine with 6 cores per die (1.87GHz) and 18MB of LLC.
- We specify the same subset of cores for every experiment
- The following runtime configurations are used:

Runtime	Task Creation	Work Stealing	Task Queue
MTH	Work-First	Random / 1 task	Core/LIFO
TBB	Help-First	Random / 1 task	Core/LIFO
QTH/Core	Help-First	Random / Bulk	Core/LIFO
QTH/Socket	Help-First	Random / Bulk	Socket/LIFO

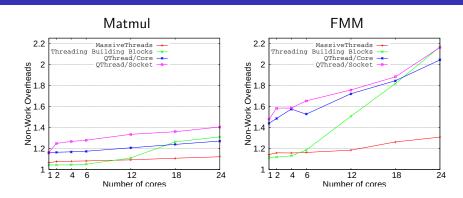
Speed-Ups for Matmul and FMM



Performance Variation at 24 Cores:

- Matmul: $16 \times -21 \times$ (MTH best, QTH/Socket worst)
- FMM: $9 \times -18 \times$ (MTH best, TBB worst)

Overheads (OVR_N) for Matmul and FMM



Overheads are obtained by measuring the time cores spend outside of work kernels. At 24 cores:

- Matmul: 1.1×-1.4× (MTH best; QTH/Socket worst)
- FMM: 1.3×-2.2× (MTH best; TBB and QTH/Socket worst)

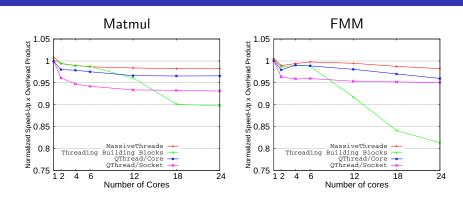
Do overheads alone explain performance?

Normalized speed-up overhead product

$$\mathsf{Speed\text{-}Up}_{N} = \frac{\mathsf{N}}{\mathsf{OVR}_{\mathsf{N}} \times \mathsf{WTI}_{\mathsf{N}}} \to \frac{\mathsf{Speed\text{-}Up}_{\mathsf{N}} \times \mathsf{OVR}_{\mathsf{N}}}{\mathsf{N}} = \frac{1}{\mathsf{WTI}_{\mathsf{N}}}$$

- The normalized speed-up overhead product is a measure of performance loss due to resource sharing
- A value of 1.0 means no work time inflation is occurring

Normalized speed-up overhead product



Speed-up degradation due to resource contention

- Matmul: 2%–10% (MTH best; TBB worst)
- FMM: 2%–18% (MTH best; TBB worst)
- Reason? cache effects due to different orders of tasks

Performance bottlenecks analysis

- Overheads can be studied with a variety of tools
 - Sampling-based: perf¹, HPCToolkit², extrae³, etc
 - Tracing-based: vampirtrace⁴, TAU⁵, extrae, etc
 - Runtime library support
- How can we analyze the impact of different runtime schedulers on data locality?
- → **Proposal**: use the reuse distance to evaluate cache performance

⁵http://tau.uoregon.edu

¹https://perf.wiki.kernel.org

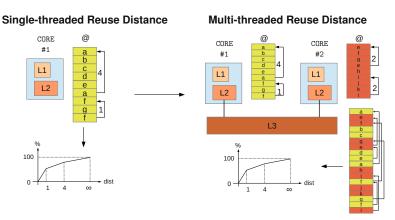
²http://hpctoolkit.org/

³http://www.bsc.es/computer-sciences/performance-tools/paraver

⁴http://www.vampir.eu

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

Multicore-aware Reuse Distance



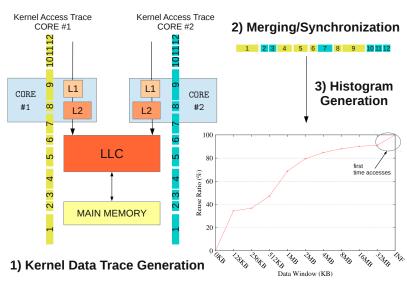
- Generation of full address traces is too intrusive
 - ightarrow changes task schedules
- Computing the reuse distance is expensive

Lightweight data tracing

We make several assumptions to reduce the cost of the metric

- Cache performance is dominated by global (shared) data
 - ightarrow short lived stack variables are not tracked. Only the kernel inputs/outputs are recorded.
- Performance is dominated by last level cache misses
 - \rightarrow we interleave the address streams of all threads and compute the reuse distance histogram
- For large reuse distances individual LD/ST tracking is not needed
 - \rightarrow we record kernel inputs at bulk (timestamp, address, size)

Kernel Reuse Distance (KRD)



Kernel Reuse Distance: Application

Kernel Reuse Distance (KRD)

KRD provides an *intuitive* measure of data reuse quality. We want to make quick assessments on reuse, comparing the performance of different schedulers

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
 - KRD histograms and runtime schedulers
 - KRD histograms and performance
- 5 Current Weaknesses
- 6 Conclusions

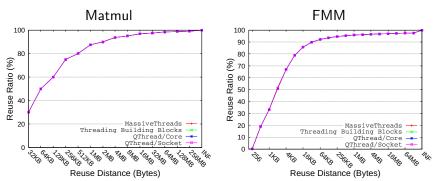
Instrumentation

- We record submatrices for matmul, and multipoles and body arrays for FMM
- Total overhead below 5% for FMM and below 1% for Matmul
- As memory traces record data regions, histogram generation is much faster

KRD histograms and runtime schedulers

- We first analyze the correlation of different schedulers and the KRD metric:
- Four schedulers
 - MassiveThreads, TBB, Qthread/Core and Qthread/Socket
- Three system configurations:
 - 1 core
 - 1 socket (6 cores)
 - 4 sockets (24 cores)

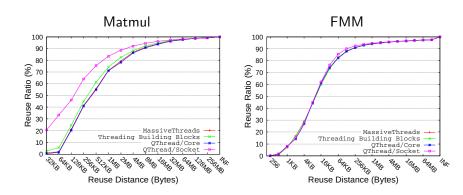
Single Core Kernel Reuse Distance (KRD-1)



Almost no variations between histograms:

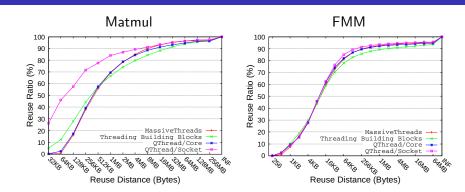
- In the abscence of work steals order is only determined by Work-First or Help-First
- Matmul kernel order is independent of spawn policy. FMM is sensitive, but differences are still minimal

Single Socket / 6 Core Kernel Reuse Distance (KRD-6)



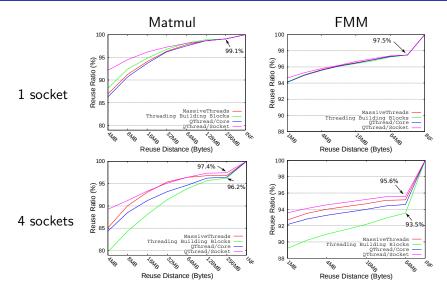
- QTH/Socket shared queue improves temporal locality
- Other schedulers almost no difference. TBB slightly better
- Differences in FMM are much smaller.

Four Sockets / 24 Core Kernel Reuse Distance (KRD-24)



- Differences in distant reuses grow
- QTH/Socket shared queue also improves temporal locality with multiple sockets
- TBB suffers in the context of multiple sockets

Impact of Multiple Sockets on Cold Accesses

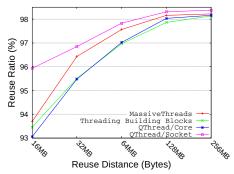


KRD histograms and performance

- Want to understand how the KRD metric correlates with hardware performance metrics
- We choose a multisocket low overheads scenario: Matmul on 2 sockets / 12 cores
 - Low Overhead: MTH, TBB, QTH/Core overheads around 1.1-1.2×
 - Moderate Overhead: QTH/Socket overhead 1.35×

Hardware Metrics and KRD for Matmul on 2 sockets

Runtime	Exec. Time	OVR ₁₂	LLC Misses	Kernel Time & Inflation
MTH	1.642 sec	1.094×	1.829×10^{6}	17441ns (1.0250×)
TBB	1.742 sec	1.11×	2.807×10^6	17898ns (1.0519×)
QTH/Core	1.859 sec	1.21×	2.339×10^{6}	17767ns (1.0441×)
QTH/Socket	2.111 sec	1.34×	1.987×10^{6}	18401ns (1.0814×)



- LLC misses correlate to data reuse histograms
- QTH/Socket LLC miss rate and WTI too large.
- Runtime activity is causing additional misses and contention on memory subsystem

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

Discussion

Tracks only global data accesses in bulk

- The user needs to ensure that stack accesses are negligible
- ullet For matmul we found that stack accesses are less than 1%

No modeling of the effects of cache coherence

• Affects multisocket scenario, our results are optimstic

No measurement of spatial locality

• A spatial locality metric could be added to model prefetchers.

- 1 Task Parallel Runtimes
- 2 Case Study of Matmul and FMM
- 3 Kernel Reuse Distance
- 4 Experimental Evaluation
- 5 Current Weaknesses
- 6 Conclusions

Summary of findings

- We developed a tool based on the reuse distance to study reuse in task parallel applications. The tools is designed to be lightweight and can provide fast comparison of different implementations.
- Although the tool was developed to compare task parallel runtimes, it can be applied to any shared memory model.
- Our experiments indicate that the reuse distance histograms correlate with scheduler policies and with hardware metrics

Thank you!

Questions?